

Call Code: ASS-RIC/49_24

Departmental Faculty	Faculty of Engineering
Research theme	Design of wearable electromechanical devices and
	implementation of measurement techniques for the indirect
	estimation of hemodynamic variables.
Brief description of the	The research project aims to develop new multi-parametric
research	wearable systems for recording electromechanical variables of
	cardiac origin, as well as to develop and test biocooperative
	algorithms capable of extracting hemodynamic features from
	collected physiological data, which are useful for evaluating the
	interaction between the mechanical and electrical aspects of the
	cardiovascular system.
	The ideal candidate should have both engineering design skills and
	expertise in data analysis techniques for multi-sensor systems.
Scientific Supervisor	Ing. Carlo Massaroni
Scientific Disciplinary Sector	IMIS-01/A – Mechanical and Thermal Measurements
Duration of contract	18 months
Annual gross amount	22.700,00
Economic coverage	La copertura economica è garantita con fondi del progetto
	"Monitoring and prEdicting hemodynamics in patients
	undergoing Transcatheter Aortic valve implantation using SKin-
	Interfaced wearable seNsors - META-SKIN", responsabile
	scientifico dott. ing. Carlo Massaroni, finanziato dal Ministero
	dell'Università e della Ricerca nell'ambito del bando "PRIN:
	PROGETTI DI RICERCA DI RILEVANTE INTERESSE
	NAZIONALE – Bando 2022 Prot. 2022H97E38".
	CUP C53C24000790006.
Admission qualifications	University degree (as per the Old Italian System) in Biomedical
	Engineering or Specialist/Master's Degree in Biomedical
	Engineering as per Ministerial Decrees No. 509/1999 and No.
	270/2004;
Language knowledge and	Written and spoken English, minimum level B2
skills	
Date of the interview	21 st March 2025, at 02:00 p.m.
	Remote candidates on Microsoft Teams platform