### **Translational Science in the Era of Precision**



Translation of the promise of basic discoveries to realize novel therapeutics, diagnostics and approaches to management that benefit the public health

### **Revival of Drug Approvals?**

The trend for fewer drug approvals continues in 2016.



<sup>a</sup>2016 partial year ending Sept. 30.

Source: BioMedTracker, a service of Sagient Research (http://www.biomedtracker.com/)

#### a Success rates by phase

Percentage likelihood of moving to next phase, 3-year rolling average\*



**b** Cumulative success rate Phase I to launch Percentage likelihood of moving from Phase I to launch



Nature Reviews | Drug Discovery

### **BUDGET BATTLES**

US President Barack Obama, who took office in January 2009, pushed to increase funding for science agencies. But Congress often rebuffed his proposals.



### You ain't seen nothing yet...



#### Percentage of NIH R01 Equivalent Principal Investigators of All Degrees: Age 35 and Younger vs. Age 66 and Older











Skarke C and FitzGerald GA Sci Transl Med. 2010 Apr 7;2(26):26cm12.

# A New Era in Clinical Research

- A shift from detection of large average effects to information relevant to individual patient decisions
- Harvest EHR and linked biobank at scale to uncover unexpected disease associations (e.g. AD – IBD) and interrogate mechanism
- Use of iPS cells and deep phenotyping to establish POC: Human Phenomic Science
- Mendelian randomization PCSK9
- More focused and creative trial design

FitzGerald GA Sci Transl Med. 2015 Apr 22;7(284):284fs15

# The Institute for Translational Medicine and Therapeutics

- Founded in 2004; first translational science institute
- Focus on T1 science and human capital
- Space and money: hires, cores
- Top down and bottom up funding calls
- Diversified educational programs
- Workshops and annual meeting

### **ITMAT MISSION**

- To increase (through recruitment and education) the number of investigators who work between POC in model systems and elucidation of mechanisms in humans
- To identify and depress the barriers to their success

# **ITMAT Network Dynamics**

















# **Exciting** Times

- CAR-T cells for leukemia
- PD-1 blockade and B-Raf inhibitors in cancer
- CAR-T editing for PD-1 sensitivity
- PCSK9 inhibitors and refractory dyslipidemia
- Vaccines for herpes, malaria and MERS
- Topical chemo for lymphoma
- Gene therapy for blindness and rare diseases

# Translational Science delivers... But how precisely?

- PD-1 blockade works ~ 80% of the time in vitro but only ~ 30% of the time in vivo; how do you predict resistance; how do you avoid resistance; how do you detect emergence of resistance?
- How do you approach combinatorial strategies, often with drugs in development?
- How do you share equitably the benefits of Precision Medicine?

# COX-2 Inhibitors: Translational Science and RCTs



Copyright © 2005 Nature Publishing Group Nature Reviews | Drug Discovery Translational Therapeutics of the AA Cascade



#### Differentially Regulated despite Structural Similarity

#### Comparison of celecoxib (a: ) and rofecoxib (b) bound within the cyclooxygenase channel of COX-2.





#### **Orlando & Malkowski**

Volume 72 | Part 10 | October 2016 | Pages 772–776 | 10.1107/S2053230X16014230

### No additional effect of Celecoxib and Rofecoxib on throbogenesis in IP KO mice



#### COX-2 dependent prostacyclin mediates thrombogenesis induced by celecoxib and rofecoxib

### Effect of COXIBS on major vascular events, by TYPE OF COXIB

|                                                                                                             |                         | E                                                              | Events (% pa)                                               |                                                              |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--|
| Coxib (median dose)                                                                                         | No.*                    | Allocated<br>coxib                                             | Allocated<br>placebo                                        | Rate ratio (RR)                                              |  |
| Celecoxib (400 mg)<br>Rofecoxib (25 mg)<br>Etoricoxib (60 mg)<br>Lumiracoxib (200 mg)<br>Valdecoxib (20 mg) | 41<br>25<br>8<br>9<br>7 | 126 (1.13)<br>144 (1.22)<br>7 (1.52)<br>15 (1.01)<br>10 (1.62) | 66 (0.74)<br>103 (0.89)<br>4 (1.51)<br>7 (1.05)<br>3 (1.24) |                                                              |  |
| Subtotal                                                                                                    | 4<br>86                 | <b>307 (1.15)</b>                                              | 175 (0.82)                                                  | <ul> <li>✓ 1.37 (1.14 - 1.66)</li> <li>p&lt;0.001</li> </ul> |  |
| - <b></b> - 99% or      ↔ 95% CI                                                                            |                         |                                                                |                                                             | 0.1 0.5 1 2 5 10                                             |  |
| * Number of comparisons wi                                                                                  | th at least one         | event                                                          | $\gamma_{r}^{2} = 0.0 (n - 0.0)$                            | FavoursFavourscoxibplacebo21)                                |  |

PRECISION and SCOTT: Limitations of large RCTs

- Non-inferiority trials of celecoxib vs naproxen vs ibuprofen.
- Less efficacious doses bias relative safety profile for celecoxib
- High and asymmetric rates of drop out before completion favor celecoxib
- Relaxation of upr. bound obscures detection of asymmetric CV risk from celecoxib
- No randomization for aspirin usage or objective measurement of intake bias favors celecoxib

### COX-1 acetylation reflects aspirin exposure



Interaction by mixed, but not COX-2 selective inhibitors to undermine antiplatelet effects of aspirin

### **Effect of NAPROXEN** on major vascular events

| Outcome                            | Coxib vs<br>placebo                    | Coxib vs<br>naproxen                   | Adjusted rate ratio<br>for naproxen vs placebo |  |  |
|------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|--|--|
| Non-fatal MI                       | 1.71 (1.23, 2.37)                      | 2.02 (1.35, 3.02)                      |                                                |  |  |
| MI or CHD death                    | 1.76 (1.31, 2.37)                      | 2.11 (1.44, 3.09)                      | 0.84 (0.52 - 1.35)<br>p=0.48                   |  |  |
| Non-fatal stroke<br>Stroke death   | 1.04 (0.73, 1.49)<br>1.46 (0.59, 3.61) | 1.19 (0.76, 1.86)<br>0.89 (0.21, 3.81) |                                                |  |  |
| Any stroke<br>Other vascular death | 1.09 (0.78, 1.52)<br>1.55 (0.96, 2.49) | 1.14 (0.74, 1.73)<br>1.49 (0.74, 3.00) | 0.97 (0.59 - 1.60)<br>                         |  |  |
| Subtotal: MVE                      | 1.37 (1.14, 1.66)                      | 1.49 (1.16, 1.92)                      | 0.93 (0.69 - 1.27)<br>p=0.66                   |  |  |
|                                    |                                        |                                        | 0.25 0.5 1 2 4                                 |  |  |

4

Favours

placebo

Favours

naproxen

- 99% or ♦ 95% CI





T<sub>1/2</sub>(h)



### **Lipidomics in Pentacon**



### **Spatiotemporal Lipidomic Perturbations**



**Spatial mapping of discrete lipid entities under positive ion imaging mass spectrometry.** Using MALDI-MS it is possible to define detailed anatomical maps for specific lipids in entire organisms at a resolution of 20-50 mM.

### Differential expression: largest fold differences between strains

| Tissue          | Gene     | Fold difference |
|-----------------|----------|-----------------|
| Adipose         | Lipg     | 1934            |
| Adrenal gland   | Ggt1     | 1469            |
| Adipose         | Ptgs2    | 1034            |
| Spleen          | Pla2g1b  | 968             |
| Adrenal gland   | Slc27a2  | 761             |
| Kidney          | Akr1c18  | 553             |
| Adipose         | Ptgds    | 508             |
| Kidney          | Alox15   | 417             |
| Skeletal muscle | Slc27a2  | 309             |
| Adipose         | Lipa     | 274             |
| Adipose         | Gpx6     | 258             |
| Adrenal gland   | Pla2g2d  | 213             |
| Adipose         | Alox12   | 206             |
| Adipose         | Ggt1     | 188             |
| Skeletal muscle | Agpat2   | 161             |
| Skeletal muscle | Ptger3   | 140             |
| Lung            | Slc27a2  | 112             |
| Macrophage      | Ptgs2    | 99              |
| Adipose         | Pla2g5   | 93              |
| Liver           | Akr1c18  | 90              |
| Adrenal gland   | Pla2g2f  | 76              |
| Adrenal gland   | Acsl4    | 74              |
| Macrophage      | Gpx3     | 66              |
| Adrenal gland   | Pla2g12b | 66              |
| Lung            | Alox15   | 63              |



High expression Low expression

### **Precision Medicine for NSAIDs**

- Pharmacological probes (celecoxib vs naproxen)
- Multiple dose response curves at different times of day in cells, fish, mice and humans
- Deep phenotyping in humans at extremes of COX-2 expression in B lymphocytes ex vivo
- Multi-omic and broad lipidomic interrogation
- Genetic modifiers from inbred fish and mice
- Network, structure based and dynamical modelling to develop predictive algorhithms
- BP and thrombogenesis as CV risk surrogates

# Fostering Entrepreneurship at a Price



THE DAY BEGINS AT A COPYRIGHT LAW OFFICE

#### Drug prices Sprycel Zytiga Revlimid Per 30 pills of 100mg (\$) Per 100 pills of 10mg (\$) Per 120 pills of 250mg (\$) 12,000 10.000 60,000 9,000 55.000 10,000 8.000 50,000 7.000 8.000 45,000 6,000 6.000 40.000 5,000 2010 12 16 14 2011 13 15 2012 14 1617 17 FT Source: Bernstein \$8,694 \$2,587 \$2,741 Median monthly Median monthly Median monthly cost in the US of cost in the UK of the cost in Australia eight cancer drugs same eight drugs of the same drugs



### Aspen Pharmaceuticals, Busulfan, the Italians and 1500%

# Drug Pricing: A Hot Political Issue

- 50-70% of pharmaceutical profitability from 5% of the global population in the US
- Branded cancer drugs least affordable in India and China, most affordable in Oz and UK with US in between (monthly cost at PPP)
- Generic medicines now 90% of US market: cost more (\$650/mo) than in the UK (\$450) or Oz (\$210)
   FT June 6<sup>th</sup> 2015

### **The Shkreli Effect**

### "No substitutes, please. I want Crestor as prescribed."

|                           | Drug-<br>maker | Dosage<br>(mg) | Prices        |                                                          |
|---------------------------|----------------|----------------|---------------|----------------------------------------------------------|
| Wellbutrin<br>(bupropion) | Valeant        | 150            | 0.46          | 36.0                                                     |
| Lipitor<br>(atorvastatin) | Pfizer         | 20             | 10.49<br>0.13 |                                                          |
| Ambien<br>(zolpidem)      | Sanofi         | 5              | 15.52<br>0.02 |                                                          |
| Prozac<br>(fluoxetine)    | Eli Lilly      | 20             | 11.39<br>0.03 | <ul> <li>Branded price</li> <li>Generic price</li> </ul> |
| Xanax<br>(alprazolam)     | Pfizer         | 1              | 8.14<br>0.05  |                                                          |
| Sarafem<br>(fluoxetine)   | Allergan       | 20             | 15.98<br>0.03 |                                                          |

FT

Sources: FT research; National Average Drug Acquisition Cost database

DTC advertising, Co-Pays, Evergreening and Pay for Delay

### Will Precision Medicine approaches prove cost effective? Will its benefits be equitably shared?

#### Costs per patient of managing selected disorders

These approximate estimates are drawn from references (10–13). CFTR, cystic fibrosis transmembrane conductance regulator.

| DISEASE ENTITY      | MANAGEMENT PLAN                                             | ~COST/YEAR (\$) | ~COST/LIFETIME (\$)      |
|---------------------|-------------------------------------------------------------|-----------------|--------------------------|
| Cystic fibrosis     | General support                                             | 25,000          | 750,000                  |
|                     | Drug to enhance CFTR function (Kalydeco)                    | 300,000         | 5,000,000                |
| Gaucher disease     | Regular enzyme replacement                                  | 200,000         | 5,000,000                |
| Hemophilia A        | Prophylactic or periodic factor administration              | 300,000         | 5,000,000-<br>10,000,000 |
| Sickle cell disease | General medical support and hydroxyurea as standard of care | 25,000          | 1,000,000                |

Stuart H. Orkin, and Philip Reilly Science 2016;352:1059-1061



### The Gene Therapy Example

- ~\$10Bn invested over the past 20 years
- Promise in immunodeficiency disorders, hemophilia
   B, congenital blindness, beta-thalassemia and metachromatic leukodystrophy.
- Despite generating no revenue 5 companies valued at > \$4Bn
- One time therapy; autologous CD34<sup>+</sup> cells expressing adenosine deaminase; \$700k
- Orphan disease act and ultrarare disorders
   Orkin and Reilly Science 2016

# How do we foster innovation while containing cost and spreading benefit?

- The true cost to the patient in the US is opaque: transparency on negotiated discounts
- Trumpenomics: share the pain Switzerland.
- EU initiatives on reimbursement based on results. Transparent evaluations of drug benefit.
- Regulatory initiatives to accelerate competition. Abolish pay for delay.
- Lessons from the altruistic sector : IP reform

#### - DISCOUNT DRUGS

The Drugs for Neglected Diseases initiative (DNDi) has produced several drugs in the past decade for a fraction of what pharmaceutical companies are said to spend. Factoring in the cost of failed candidates (not included below), the DNDi estimates that it can develop combination therapies for between US\$10 million and \$45 million, and make a completely new drug from scratch for \$110 million to \$170 million.



#### COMBINATION THERAPIES



# IP is focused on the Composition of Matter



Perhaps a 1:40,000 chance of becoming an approved drug

# IP for free





•Charities – Wellcome, Gates etc •Companies – Pharma, Oil etc •Governments – Global treaties for underserved populations • Credit Default Swaps •Tradable shares in intellectual Property

### **Modeling Success**



# **IP Reform**

- Modeling drug targets; biological networks; PK/PD; market share and pricing
- Model the barriers to success and prospectively allocate relative reward
- Use the courts to resolve discrepancies
- Postpone reward until value actually realized

FitzGerald GA Science. 2012 Oct 26;338(6106):483-4.

### The Dominant (if disputed) IP



# Conclusion

- Drug is risky and expensive but life altering breakthroughs continue to be made
- Create the infrastructure to allow academia to play in modular space; this will accelerate the process, decrease cost and increase efficiency
- The challenge is to parse variability of drug response and to shift towards a more personalized approach to understand and treat safely common syndromes, such as pain
- Its time for IP reform in drug development

### The older I get, the surer I am that I'm not running the show

