INGEGNERIA BIOMEDICA PER LA SALUTE GLOBALE E PER LO SVILUPPO SOSTENIBILE

Leandro Pecchia, PhD Professore di Bioingegneria Elettronica ed Informatica

Innovation Manager WHO Emergency Program IPC for COVID Past-President, EAMBES (2023-25), <u>https://eambes.org/</u> Secretary General, IFMBE (2022-2025), <u>https://ifmbe.org/</u> Secretary General, IUPESM (2018-2022), <u>https://iupesm.org/</u>

Roma, 30 March 2022

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA Via Álvaro del Portillo, 21 - 00128 Roma - Italia www.unicampus.it

How BME can we improve affordable health access in LMICs?

Many challenges:

- Hospital standard
- Lack of (specialised) staff
- Supply chain
- ...and also budget

For improving medical device effectiveness and safety in LMICs we have to overcome the Cartesian Fragmentation of Knowledge (i.e., no silos).

Thus we must focus on:

- Design
- Regulation
- Management
- Assessment
- Environmental impact

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA 8 field studies in 24 months: Benin, Ethiopia, South Africa, Nigeria, www.unicampus.it Uganda

www.unicampus.it

Challenge 1: understand hospital standards in LMICs

Country	Uga	nda	Ug	anda	Ug	anda	Benin		Benin		Benin	٦
Hospital	H1		H2		H3		H4		H5		H6	
Colonoscope		0		1		0		0		0	• (5
Mammograph		0		0		1		0		0	• ()
CT-scanner		0		1		1		0		0	• (C
Gastroscope		0		1		2		0		0	• (C
Infant reanimation centre		0		0		1		0		1	• · ·	1
X-Ray Machine		1		3		1		1		1	• · ·	1
Ambulance		0		3		1		2		0	• 2	2
Defibrillator		2	\bigcirc	4	NA			3		2	• ()
Ventilator ICU		0	\bigcirc	4		8		0		2	• · ·	1
Hemocytometer		1	\bigcirc	4		1		8	\bigcirc	4	• •	1
Ultrasound machine		0		8		2	\bigcirc	4		2	• 3	3
Oxygen systems/cylinders		10		10		1		0		0	• ()
Syring pump		0		8		0		2		8	3	3
Autoclave for sterilisation		2		8		10		2	\bigcirc	4	• · ·	1
Operating theatre with basic equipment		3		8		3		8		3	0 2	2
Suction pump		1		8		10		0		8	• ·	1
Infant warmer		0		8		8	\bigcirc	4		8	• ()
Anasthetic machine		1		10		8		0		2	3	3
Fetal monitor		1		8		10		0		8	• 2	2
Neonatal incubator		8		10		1		3	\bigcirc	4	0 4	4
ECG machine		0	\bigcirc	4		8		10		8	• 2	2
Patient monitor		1		10		10		10		8	10)
Scale for adult		0		10		10		10		10	10	C
Scale for newborns		0		10		10		10		10	10)
Pulsoximeter		2		10		10		10		10	10)
Thermometer		8		10		10	•	10		10	10)
Blood pressure machine/cuff		10		10		10		10		10	10)

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA www.unicampus.it A Framework for Assessing Healthcare Facilities in Low-Resource Settings: Field Studies in Benin and Uganda, 2020, <u>https://doi.org/10.1007/s40846-020-00546-3</u> 5/30

Challenge 2: shortage of (specialized) healthcare professionals, <u>PNEUMONIA</u>

AIM: distinguish bronchitis vs pneumonia using easily recognised **symptoms and signs**, via AI

RESULTS:

- 6 clinically relevant, easily interpreted symptoms were found to be best predictors of pneumonia.
- AI model with an AUC of 93%, sensitivity 80% and specificity 84%.

CONCLUSIONS:

• AI can support pneumonia referral in Africa, using symptoms and signs (i.e. no lab tests)

Challenge 2: shortage of (specialized) healthcare professionals, <u>PUPILLARY REFLEX</u>

Challenge 3: supply chain, <u>OXYGEN CONCENTRATOR</u>

A nurse from new-born unit noticed that the device was performing consistently (moving the control from 1 to 2, the output was not doubled as expected)

Pecchia, L., et al. "Health Technology Assessment and Biomedical Engineering: Global trends, gaps and opportunities." *Medical engineering & physics* 72 (2019): 19-26.

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA www.unicampus.it 3D-printed activated charcoal inlet filters for oxygen concentrators: A circular economy approach, 2020, <u>https://doi.org/10.1016/j.deveng.2022.100094</u>

Challenge 3: supply chain, <u>OXYGEN CONCENTRATOR</u>

XR, CAD, 3D printing and DIY active coal, (wood and calcium chlorite)

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA www.unicampus.it 3D-printed activated charcoal inlet filters for oxygen concentrators: A circular economy approach, 2020, <u>https://doi.org/10.1016/j.deveng.2022.100094</u>

How the global community of BME is supporting Africa?

In the short term

- Evidence Based biomedical-engineering: factual evidence on medical settings & gap analyses
- Technology for compensating the shortage of specialised workers (HW and BMEs), e.g. Al
- Overcome supply chain bottleneck with environmental friendly manufacturing: circular economy, 3D printing, up-cycling, local-manufacturing.

In the long term

- Capacity *building* strengthening
- Support local high-quality research for inverting brain drain
- Dialogue with local/international authorities
- Bridge competent African Scholars and relevant policy makers
- Demonstrate the value of LMICs research and innovation for high-income countries

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA www.unicampus.it

UNIVERSITA' CAMPUS BIO-MEDICO DI ROMA www.unicampus.it

12/30

- 1. Donation of medical devices in low-income countries: preliminary results from field studies. InInternational Conference on Medical and Biological Engineering 2019 May 16 (pp. 423-427). Springer, Cham.
- 2. 3D-printed activated charcoal inlet filters for oxygen concentrators: A circular economy approach. Development Engineering. 2022 Jan 1;7:100094.
- 3. Medical devices in sub-Saharan Africa: optimal **assistance** via a computerized maintenance management system (CMMS) in Benin. Health and Technology. 2019 May 19;9(3):219-32.
- 4. A framework for **assessing healthcare facilities** in low-resource settings: field studies in Benin and Uganda. Journal of Medical and Biological Engineering. 2020 Aug;40(4):526-34.
- 5. A framework for designing medical devices resilient to low-resource settings. Globalization and health. 2021 Dec;17(1):1-3.
- 6. Pupillometry via smartphone for low-resource settings. Biocybernetics and Biomedical Engineering. 2021 Jul 1;41(3):891-902.
- 7. A vest for treating **jaundice** in low-resource settings. In2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT) 2021 Jun 7 (pp. 122-127). IEEE.
- 8. On the universality of medical device regulations: the case of Benin. BMC health services research. 2022 Dec;22(1):1-4.
- 9. A smartphone-based tool for screening **diabetic neuropathies**: a mHealth and 3D printing approach. Submitted to Biomedical Signal Processing and Control (Accepted)
- 10. Personal protective equipment research and innovation in the context of the World Health Organization COVID-19 R&D Blueprint program. American Journal of Infection Control. 2022 Aug 1;50(8):839-43.Moon M, Pecchia L, Berumen AV, Baller A. Personal protective equipment research and innovation in the context of the World Health Organization COVID-19 R&D Blueprint program. American Journal of Infection Control. 2022 Aug 1;50(8):839-43.
- 11.COVID-19 preparedness and social dynamics in a Sub-Saharan Africa country, Benin. Health promotion international. 2022 Aug;37(4):daac105.
- 12. Social Engagement in the Fight Against **COVID-19** in the Urban and Peri-Urban Areas of Cotonou (Benin, Sub-saharan Africa): Acceptability of the Vaccination and Tracking Program. Frontiers in medicine. 2022;9.
- **13. The Inadequacy of Regulatory Frameworks** in Time of Crisis and in Low-Resource Settings: Personal Protective Equipment and COVID-19. Health and Technology. 2020 May 2:1.
- 14. The role of ethics in science: a systematic literature review from the first wave of COVID-19. Health and Technology. 2021 Sep;11(5):1063-71.
- 15. Biomedical engineering and ethics: reflections on medical devices and PPE during the first wave of COVID-19. BMC Medical Ethics. 2021 Dec;22(1):1-7

